
Programming Studio: A Course for Improving
Programming Skills in Undergraduates

Michael Woodley
Department of Computer Science

University of Illinois at Urbana-
Champaign

Urbana, IL, USA
(217) 244-1971

mwoodley@cs.uiuc.edu

 Samuel N. Kamin
Department of Computer Science

University of Illinois at Urbana-
Champaign

Urbana, IL, USA
(217) 333-7505

kamin@uiuc.edu

ABSTRACT
Even after taking numerous programming courses, many students
have poor programming skills. This is a problem not only in their
post-graduation employment, but even in the higher-level
Computer Science courses, where large programs are routinely
assigned. Yet, teaching programming skills is expensive; like
teaching writing, it can only be accomplished by a repeated cycle
of writing, getting informed feedback, and rewriting. In this
paper, we describe a computer science course designed around the
concept of a studio course like those used in art and architecture.
Its key elements are practice, public presentation, and review by
peers in a small group. We discuss our experience in teaching the
course for two years. We believe this course can be replicated
and taught, at reasonable cost, even in large CS departments.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Information
Science Education – Computer Science Education

General Terms
Measurement, Design, Experimentation.

Keywords
Programming, practice, undergraduate education.

1. INTRODUCTION
Computer Science departments strive to teach their students both
the fundamentals of computers–computer architecture,
algorithmic analysis, etc.–and the skill–some would say art–of
programming computers. In many cases, the skills are learned
only as a side effect of learning fundamentals–by doing
homework assignments that require programming in classes that
are primarily teaching fundamentals. Normally, only introductory
courses are actually about programming. In modern Computer
Science departments, skills teaching is denigrated, the attitude
being that skills can be learned on the job.

This approach has several unfortunate consequences:

• It is uncertain. Since most skills acquisition occurs in
courses in which “skills acquisition” appears nowhere in the
syllabus, it is entirely up to the instructor to decide how
much emphasis is placed on it. Students may graduate

without ever having taken a course in which the instructor
took this part of the course seriously.

• It is poorly done. For the same reasons as just cited,
instructors rarely put much emphasis on teaching skills. An
instructor in a high-level CS class is unlikely to put a lot of
lecture time into discussing how the programming homework
should be done, but instead will spend nearly all the lecture
time explaining the algorithms. More importantly, the
grading of programming assignments often consists of little
more than testing the program for correct functional
behavior, providing little feedback on the program structure
or the student’s programming style.

• It is late. At best, the student will graduate with decent
skills obtained by writing many large programs over several
years. But in the meantime, the students will have struggled
with those programs, distracting him from the very
fundamentals to which the courses are devoted.

In our department, we decided several years ago that it would be
beneficial for our students to learn to program in a course
dedicated to that goal. The course would come after the students
had learned the basic concepts of programming but before the
more advanced courses.

This decision left us to confront the fundamental problem in
teaching students how to program: how to provide individualized
instruction in a department with about 800 undergraduate CS
majors. It is our belief that learning to program well is much like
learning to write well: the student needs to receive detailed
feedback, rewrite, and receive more feedback. Yet meeting with
students individually would entail an impossible time
commitment, and providing carefully written comments on
students’ programs is not only time-consuming but exhausting.
With sufficient resources, these methods would be feasible – after
all, this is how writing is taught, even on a large campus like ours.
However, in CS, as noted earlier, the craft of programming is not
given its full due, and these resources are not available.

Our solution was to create a course that borrows certain
elements from studio courses in art and architecture, above all, the
aspects of practice combined with public performance. In those
courses, students all work in a common area, and since their work
is primarily visual, it is under constant scrutiny. Periodically,
there are reviews (or “critiques,” or “pin-ups”), in which the
students present their work to a panel of professors (with other

students often in the audience as well). In our course, we have
tried to reproduce the spirit of those studios.
 In this paper, we describe our experience with this course.
Section 2 explains the structure of the course in detail, and section
3 says why we believe it is succeeding. Although the basic
structure has not changed since we introduced the course, we have
made numerous adjustments to make the class more productive;
to give readers the benefit of our trials and errors, we discuss
some of these adjustments in Section 4. Section 5 discusses some
ongoing challenges and future plans.

1.1 Related Work
Studio-style courses are commonplace in departments of fine

arts, creative writing, and architecture. Their essential feature is
the intensive, on-going discussion of one’s work, both with the
instructor and with classmates. The idea of using a studio
approach to teaching programming has been championed by
Richard Gabriel [Gab].

Perhaps due to the instructional manpower requirements, such
courses have not became popular in Computer Science programs.
There are some exceptions. Carbone and Sheard [CS02] offer an
introductory programming course at Monash University in
Australia that is explicitly based on architectural studio courses
(the “Bauhaus” model). Clancy et al. [CTRSL03] investigate a
very different model of cooperative Computer Science education
at UC Berkeley, in which group studio projects largely replace
traditional lectures, and the instructor’s role becomes that of a
consultant. Gonsalvez and Atchison [GA00] report on their use
of the studio method in a set of IT design courses at Monash
University, taking note of the heavy resource requirements of
such courses. A more ambitious effort is reported by Docherty et
al. [DSBK01], who have structured an entire CS curriculum at the
University of Queensland, Australia, around studio-style courses
(again with explicit acknowledgement of the fine arts inspiration).

Our studio course differs from these courses in several ways:
It is aimed at intermediate, rather than beginning, students. Also,
it is a single course, not a curriculum, making it more easily
reproducible in departments with standard curricula. There are
several courses being offered by Computer Science departments
that are closer to ours. Tomayko [Tom87] reports on a studio
course he designed for the Software Engineering Institute at
Carnegie-Mellon. The Programming Practicum course at Harvey
Mudd college is structured around the annual ACM Programming
Contests; this is a great motivator, and the college has indeed
done extremely well in that competition. The Software Practicum
at Georgia Tech (CS 2335) is like our course, frankly devoted to
teaching programming skills, although the topics tend toward
“programming-in-the-large” topics, such as UML-based program
design.

1.2 Contributions of This Work
The contribution of this paper is the description of a course that
we have taught for the past two years at the University of Illinois,
which provides a high level of individualized instruction in
programming to a large number of students at a reasonable cost.
We discuss the lessons we have learned in teaching the course and
the adjustments we have made, as well as areas of continuing
concern and plans for the future. We believe the type of course

we have introduced can be duplicated anywhere with a modest
commitment of resources.

2. COURSE STRUCTURE
The Studio course has no fixed syllabus. It meets in a one-hour
lecture once a week and each students attends a two-hour
discussion section each week. Programming assignments are
usually specified less precisely than in ordinary low-level CS
classes, and usually last two weeks; we have recently added a
four-week final project devised by each student (with the
instructor’s approval). We discuss these three components–
lectures, discussions sections, assignments–in the following, and
also discuss the cost of the course.

First, we need to say something about where this course falls
within our curriculum. The question of where the course can be
most profitably placed is still being debated, but we have chosen
to place it just between the initial set of programming courses and
the upper-level courses. Specifically, students in the Studio will
have taken CS1 (using Java), CS2 (using C++), a course in a
computer architecture, and a course in systems programming, all
of which are programming courses.

We have considered moving the studio earlier–even to just
after CS1–but have not actually experimented with any other
placement. With the current position, students come to the course
having learned the main techniques of programming (including
concurrency), at least superficially. Thus, in the Studio, they can
practice all these techniques. The Studio helps students integrate
lessons from all their previous classes.

2.1 Lectures
The instructor lectures once a week, either on a topic of general
programming interest or on the next assignment. Thus, lectures
might present material on:

• Proper programming style – the use of comments, code
formatting, choice of variable names, etc. Good style would
have been taught in earlier classes, but probably was not
consistently enforced.

• Programming tools – By “tools” we mean debuggers, version
control systems, “makefiles”, and such. Again, students may
have been introduced to these tools in earlier classes, but at a
time when they were heavily occupied with trying to
understand the other, more conceptual, course material.

• Algorithms and technologies needed in programming
assignments.

Almost every assignment introduces some technology – an
API or programming language – with which the students are not
expected to be familiar. The lecture gives them a start at learning
the technology, although they will still need to spend time on their
own to learn it well enough to do the assignment. With new
assignments being given every two weeks, topics like these
account for about half the lectures. We will sometimes have
guest lecturers, possibly members of our own faculty.

2.2 Discussion Sections
The weekly two-hour discussion sections are the focus of the
course, its major innovative feature, and the aspect of the course
on which we have expended the most effort. Sections consist of
five students and an instructor who acts as moderator. Each

student is given 20-25 minutes to present their week’s work. The
students present and explain their programs. The instructor and
other students ask questions and critique the student’s work.

The public presentations have several effects:

• Students will work hard during the week to avoid looking
foolish in their presentation.

• Students will naturally drift toward writing code that is easy
to explain – which is a focus that nearly always produces
better code.

• Students cannot cheat. If a student gets code from someone
else, this fact will be exposed as soon as they start to explain
it.

The last of these effects has an important corollary. In other
courses, instructors are sometimes reluctant to have students work
in groups because they want to be sure every student learns to
program individually. In the Studio, we are sure that each student
is learning; this relieves the pressure on the other courses and
permits them to use modalities – team projects, pair
programming, guided lab work – that are deemed preferable on
most aspects except the guarantee of individual work.

2.3 Assignments
The assignments are intended to provide the students with ample
opportunity for creativity. They are not extremely difficult, but
generally require a considerable amount of time and coding. This
is in keeping with the philosophy of the course which is to
provide an environment for practice. Here are some example
assignments:

1. Raster Analyzer. We begin each semester with a simple
program to review basic programming style, such as this one:

Read in grid data from a file, compare every element in
the grid to its eight neighbors and generate a byte for
each member with a bit set for each neighbor that is
identical. Write your resulting grid data to a file. Create
your own input data in whatever form you find
convenient. Write in C++.

In the second week, we have students rewrite this program,
applying low-level optimizations; students have taken
courses that should make this exercise straightforward, but
they have a surprisingly weak concept of precisely what
computation is produced by a given program, so we find this
exercise extremely useful.

2. Machine Portfolio Generator. Students build the
infrastructure for an online portfolio of their work (which we
have sometimes used as the presentation format in discussion
sections as well):

Read a text file that describes the format of a web-based
portfolio, including names of source files and mark-up
information. The resulting web pages contain
descriptions of projects, with source code,
documentation, etc. Use any language you like.

The portfolio assignment is a multi-week assignment which
allows for a considerable amount of creativity and can be
built upon in numerous ways. We have used it to introduce
XML (for the layout specification), PHP, and MySql – the
kind of practical topics that are often omitted from the more
conceptual courses.

3. Final Project. Students propose a project for the remaining
4 weeks of the semester. Their proposals must indicate what
they plan to learn, and give a plan of work specific enough
so that we can determine their expected workload.

2.4 Cost
Our course has one instructor, a number of teaching assistants
(graduate students) and studio aides (undergraduates). The mix
depends upon the availability of TAs. We have found that studio
aides drawn from the best students in previous semesters are
usually excellent. The undergraduates and TAs need to be
selected based on their programming skills, their ability to
constructively offer criticism, and their ability to foster a
constructive atmosphere among the students in the section.

In terms of manpower, we have taken the view that no one
can be asked to moderate studio sections for more than 10 hours
(5 sections) per week. Thus, each graduate teaching assistant can
teach 25 students. This means that, on a per-student basis, the
studio employs about twice as many TAs as an ordinary course.
On the other hand, the course requires little work of the TAs
outside the discussion sections, as there are no exams and no
additional homework to be graded. (The TAs need to be available
to students who need more help than is provided in discussions,
which will add several hours per week to the workload.) Thus, it
is not unreasonable to find part-time work for these TAs in other
courses, as a way to lower the overall cost to the department.
Employing undergraduates also lowers the cost. Undergraduates
are paid only for the time they spend in the discussion section and
they do not offer office hours or additional instruction.

Since the class is now required, it will serve 100 students per
semester, requiring four TA’s. This is a large number for a course
of this size, but our department currently employs upward of 80
TA’s, so this is a financial burden we can bear.

3. EVIDENCE OF SUCCESS
In addition to testimonials from students indicating that they

found the course helpful, last semester we asked students to write
their first assignment again at the end of the semester. This
rewrite of the first assignment was required but not graded. We
were curious to see if there was actual improvement in coding.
To some extent, improvement is a subjective thing. However,
when looking for specific habits like the use of constant
definitions instead of “magic numbers”, good variable naming,
use of functions and prototyping, commenting and readability,
we can actually see improvement. As one might expect, students
with more prior experience show less improvement. Experienced
students stick with the habits to which they have become
accustomed whether those are bad or good habits.

For example, in one inexperienced student’s first version of
the assignment (raster analyzer), the entire program was in
main(), “magic numbers” were used, boundary conditions were
checked at every access, output and processing were mixed, and
there were few comments. In the second version, he had moved
code into functions which were commented; magic numbers were
gone, variables and functions were named well, and performance
improvements discussed in lecture had been used.

4. LESSONS LEARNED
The weekly discussion sections are the key educational
component of the Studio course. As described earlier, in these,
every student – five in each section, meeting with an instructor –
gives a 20-25 minute presentation about his or her program.
Students critique each other’s work, with the instructor acting as
moderator.

Before we began giving the course, we were afraid that
students might be overly harsh in their critiques. This has not
proven to be the case. Rather, it is often the instructor who offers
the most cogent criticism, even in cases where the flaw in the
presenter’s code is obvious. Undoubtedly, one reason for this is
that students simply don’t recognize the flaws. However, we
believe the main reasons are that (a) students are not confident
enough in their judgments to make criticisms that may turn out to
be unwarranted, and (b) students do not want to appear to be
mean to other students. Students are discouraged from making
trivial criticisms. More experienced students are encouraged to
offer suggestions of better approaches to avoid harsher forms of
criticism.
 Rather than give a complete history of discussion section
structures we have used, we divide our efforts into several
categories and discuss the range of differing methods for each.
We then describe the current structure, which seems to work well.

Presentation. We feel it is important that student prepare their
presentations carefully and not simply bring their latest code and
discuss it extemporaneously. At the same time, we want the
presentation to focus on the code itself, not on functional behavior
or visual appearance or idealized pseudo-code. In attempting to
forge the best compromise, we have tried several approaches:

• PowerPoint presentation. The problems with this approach

are that only a small portion of code is available for
examination and students spend too much time on preparing
the presentation.

• Programming portfolio. The portfolio is web-based and
contains a page for each project. On each page is a
description and a link to the source code files written for the
project.

• General code review. Students use code editors of their
choosing. One advantage is that many editors have syntax
highlighting which makes the code easier to read.

Discussion. Initially, everyone in the discussion section was
expected to see the code and make an examination of the code
“cold”. That is, they see the code for the first time during the
discussion section. This puts everyone on the same footing in
regards to familiarity with the code; however, it is difficult for
students to understand the code well enough to ask meaningful
questions in the time allotted. We have tried several alternatives:
• All participate. The first approach was that everyone was

expected to ask questions of each of the other presenters.
The questions asked tended to be easy. This is due both to
students wanting to be easy on each other in hopes that they
would receive easy questions and to students giving a cold
read of the code. Some students sat quietly.

• Designated questioner. We changed the expectation to be
that one student would be the designated examiner for

another student, so that by the end of each session each
student had presented and been the primary investigator for
another’s code.

• Code available beforehand. We now expect students to hand
their code in the day before discussion section so that the
other students can examine the code. Students did not put in
the time reading all of the other programs.

• Code available beforehand with one specific investigator.
We have put the best methods together so that students are
now only expected to be familiar with the code of one other
presenter on the day of discussion. All students are still
expected to participate but one is given a lead role in
examining the code of another.

Student assessment. The TA keeps track of the participation of
each student using a questionnaire that is specific to each
assignment. Originally, grading was a count of check marks on
that questionnaire. We have refined that so that each question is
weighted. The expectations in the questionnaire are provided to
the students in advance so they know what they will be judged on
in class.

At present, we are employing a discussion structure based on
the roles outlined for code walkthroughs in the book Code
Complete [MCC01]. There are 4 roles in this scheme: author,
moderator, scribe and reviewer. The TA is the moderator and the
students take turns at the other roles.

Students now hand in their code the day before discussion
sections start for the week. All sections, regardless of when they
meet turn in their code at the same time. The TA designates the
primary reviewer and emails a copy of the author’s code to the
designated reviewer. The primary reviewer familiarizes himself
with the author’s code. In discussion section, the author gives a
presentation of his code and focuses on sections that presented
problems, were tricky or that he finds particularly interesting.
After his short presentation, the remaining students in the
discussion section ask questions about the code.

The designated reviewer is expected to direct attention to
code that is particularly interesting, difficult or that needs
improvement. The scribe records improvements that are indicated
during the discussion.

The TA acts as moderator by keeping things on track, asking
questions that he believes are pertinent and insures the list of
obligations is fair. The next week the TA uses the list of
obligations as a checklist to see if the author made the changes
indicated.

5. CHALLENGES AND FUTURE WORK
We have not yet given the Studio course to the full complement
of 100 students. Though we do not have any concerns about
having adequate manpower, we are worried about quality control.
The course is a lot of work for the students, and the discussions
can be stressful. In this environment, incompetent or insensitive
instructors, and personality conflicts among students, can have an
exaggerated and highly detrimental effect on some students. We
anticipate instituting a formalized system of TA training, review,
and oversight, possibly including taping discussions sections to
critique the instructors.

We need to continually work on maintaining the quality of the
discussion in the discussion sections. We have several ideas for
refining the structure: requiring students to make the next week’s
improvements to someone else’s code; using software to enhance
the interaction of students; and allowing students to work in teams
on a project.

We are currently working, under a grant from Microsoft, to
introduce new technology into the studio discussions. We have
developed a system for doing code reviews on networked Tablet
PC’s, which supports the “roles” mentioned in section 4. We
hope this system will improve both the quality and recall of
discussions, as well as helping with grading (which has an
indirect effect on discussion quality, as students are graded on
class participation).

Some other ideas for the Studio that have not yet tried are:

• Invite faculty to design programming assignments around
their own research – possibly incorporating software they
have written – and give the lecture on that assignment.

• Draw assignments from Source Forge or some other open
source repository.

• Read programs. We would like to find a set of exemplary
programs to review in lecture, as well as on the first day of
discussion.

• Assign different criteria for some assignments, e.g.
conciseness, generality, speed, etc. Implicitly, our basic
criteria of program quality are clarity and simplicity, and we
feel comfortable with this. But having students write to
other criteria – even when those do not normally represent
desirable characteristics in the real world – can enlighten by
highlighting the boundaries of programming practice.

6. REFERENCES
[CS02] A. Carbone, J. Sheard. A studio-based teaching and

learning model in IT: what do first year students think?
ACM SIGCSE Bulletin, Proceedings of the 7th Annual
Conference on Innovation and Technology in Computer
Science Education. 34, 3, June 2002.

[CTRSL03] M. Clancy, N. Titterton, C. Ryan, J. Slotta, M. Linn.
New Roles for Students, Instructors, and Computers in a
Lab-based Introductory Programming Course. In
Proceedings of the 34th SIGCSE Technical Symposium
on Computer Science Education. Reno, Nevada. 2003.
132 – 136.

[DSBK01] M. Docherty, P. Sutton, M. Brereton, S. Kaplan. An
Innovative Design and Studio-based CS Degree. In
Proceedings of the Thirty-second SIGCSE Technical
Symposium on Computer Science Education. Charlotte,
North Carolina. 2001. 233 – 237.

[Gab] R. P. Gabriel, Master of Fine Arts in Software. Published
online at
http://www.dreamsongs.com/MFASoftware.html.

[GA00] C. Gonsalvez, M. Atchison. Implementing studios for
experiential learning. In Proceedings of the
Australasian Conference on Computing Education.
Melbourne, Australia. December 2000. 116-123.

[MCC01] McConnell, Steve. Code Complete, pages486-487.
Microsoft Press, 2nd Edition, 2004

[Tom91] J. E. Tomayko. Teaching Software Development in a
Studio Environment. In Proceedings of the Twenty-
second SIGCSE Technical Symposium on Computer
Science Education. San Antonio, Texas. 1991. 300 –
303.

